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Résumé. Nous introduisons le concept de paramètre de risque dans un modèle de
volatilité conditionnelle de la forme εt = σt(θ0)ηt et nous proposons plusieurs estimateurs
de ce paramètre. Pour une mesure de risque donnée r, le paramètre de risque conditionnel
est une fonction du coefficient θ0 de la volatilité et du risque r(ηt) du processus des
innovations. Une méthode en deux étapes permet d’estimer successivement ces quantités.
Nous proposons également une méthode alternative en une seule étape, qui est fondée sur
une reparamétrisation du modèle et sur l’utilisation d’un estimateur du quasi-maximum
de vraisemblance non gaussien. La théorie asymptotique, établie pour des mesures de
risque générales, comprenant notamment la valeur à risque (VaR) ou l’ES (Expected
Shortfall), permet de quantifier le risque d’estimation. Dans le cas GARCH standard, la
comparaison asymptotique montre la supériorité de la méthode en une étape quand les
innovations sont à queues lourdes. Les résultats théoriques sont illustrés sur des séries de
rendements d’indices boursiers.

Mots-clés. Expected Shortfall, QMV non gaussien, Regression quantile, Risque
d’estimation, Valeur à Risque.

Abstract. This paper introduces the concept of risk parameter in conditional volatil-
ity models of the form εt = σt(θ0)ηt and develops statistical procedures to estimate this
parameter. For a given risk measure r, the risk parameter is expressed as a function of
the volatility coefficients θ0 and the risk, r(ηt), of the innovation process. A two-step
method can be used to successively estimate these quantities. An alternative one-step
approach, relying on a reparameterization of the model and the use of a non Gaussian
QML, is proposed. The asymptotic results, established for general risk measures, the
Value-at-Risk (VaR) and the Expected Shortfall (ES), allow to quantify the estimation
risk in conditional risk measurement. Asymptotic comparisons, in the case of standard
GARCH models, suggest a superiority of the one-step method when the innovations are
heavy-tailed. An empirical illustration for stock market indices is proposed.

Keywords. Estimation risk, Expected Shortfall, Non Gaussian QML, Quantile Régression,
Value-at-Risk.
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1 Risk parameter in volatility models

Most conditional volatility models are of the form{
εt = σtηt
σt = σ(εt−1, εt−2, . . . ; θ0)

(1)

where (ηt) is a sequence of iid random variables, ηt being independent of {εu, u < t},
θ0 ∈ Rm is a parameter belonging to a parameter space Θ, and σ : R∞ × Θ → (0,∞).
When Eηt = 0 and Eη2

t = 1, the variable σ2
t is generally referred to as the volatility of εt.

A leading model, the most widely used among practitioners, is the GARCH(1,1) model
defined by

σ2
t = ω0 + α0ε

2
t−1 + β0σ

2
t−1, (2)

where θ0 = (ω0, α0, β0)′ ∈ (0,∞) × [0,∞) × [0, 1). For this model we have σ2
t =∑∞

i=1 β
i−1
0 (ω0 + α0ε

2
t−i), which is of the form (1).

It is assumed throughout that there exists a function H such that for any θ ∈ Θ, for
any K > 0, and any sequence (xi)i

Kσ(x1, x2, . . . ; θ) = σ(x1, x2, . . . ; θ
∗), where θ∗ = H(θ,K).

Most conditional volatility models are such that for K ≥ 1, θ∗ ≥ θ componentwise. For
instance, in the GARCH(1,1) case we have θ∗ = (K2ω,K2α, β)′ with standard notation.
The parameter θ0 can thus be interpreted as a volatility parameter in the sense that the
larger θ0 the larger the volatility.

Now we define the notion of conditional risk parameter. Let r denote a risk measure,
that is, a mapping from the set of the real random variables to R. Assume that r is
nonnegative, positively homogenous2 and law-invariant 3. Then the risk of εt conditional
on {εu, u < t} is given by

rt−1(εt) = σ(εt−1, εt−2, . . . ; θ0)r(ηt). (3)

Now, assuming r(ηt) 6= 0, let η∗t = ηt/r(ηt) and let θ∗0 = H(θ0, r(ηt)). The model can be
reparameterized as {

εt = σ∗t η
∗
t , r(η∗t ) = 1,

σ∗t = σ(εt−1, εt−2, . . . ; θ
∗
0).

Because the conditional risk of εt is now simply

rt−1(εt) = σ(εt−1, εt−2, . . . ; θ
∗
0),

θ∗0 will be called the conditional risk parameter.

2that is, r(λX) = λr(X) for any risk variable X and any λ > 0.
3that is, the risk r(X) of any risk variable X only depends on the distribution of X.
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Example 1 (VaR parameter) An important example is the VaR, which is the most
standard risk measure used in the current regulations. For a continuous risk variable
X with quantile function F−1

X , the VaR at level α, with α ∈ (0, 1), is given by r(X) =
−F−1

X (α). The conditional VaR of the process (εt) at risk level α ∈ (0, 1), denoted by
VaRt(α), is defined by

Pt−1[εt < −VaRt(α)] = α,

where Pt−1 denotes the historical distribution conditional on {εu, u < t}. When (εt)
satisfies (1), the theoretical VaR is then given by

VaRt(α) = −σ(εt−1, εt−2, . . . ; θ0)F−1
η (α)

where Fη is the probability distribution function of ηt. Let α be small enough so that
F−1
η (α) < 0. Thus (3) holds with rt−1(εt) = VaRt(α) and r(ηt) = −F−1

η (α). Now suppose
that the volatility model is the GARCH(1,1) model (2). Then the risk parameter at level
α is given by θ∗0 = (K2ω0, K

2α0, β0)′ with K = −F−1
η (α). This coefficient takes into

account the dynamics of the GARCH process through the volatility parameters, but also
the lower tail of the innovations distribution.

Example 2 (Expected Shortfall parameter) Another popular measure of financial
risk is the expected shortfall (ES). One reason for its attractiveness is that, in contrast to
the VaR, the ES satisfies the sub-additivity property. For a continuous risk variable X
such that E(X−) <∞, the ES at level α ∈ (0, 1) is given by r(X) = −E[X | X ≤ F−1

X (α)].
The conditional ES of the process (εt) at risk level α, denoted by ESt(α), is defined by

ESt(α) = −Et−1[εt | εt < −VaRt(α)],

where Et−1 denotes the expectation conditional on {εu, u < t}. When (εt) satisfies (1),
the theoretical ES is then given by

ESt(α) = σ(εt−1, εt−2, . . . ; θ0)ESη(α),

where ESη(α) is the ES at level α of ηt, which is of the form (3).

Example 3 (VaR and ES parameters for two GARCH(1,1)) For the sake of il-
lustration, consider two GARCH(1,1) models with, respectively, standard Gaussian and
standardized Student(4) innovations. The volatility parameter, as displayed in Table 1,
is larger for the Gaussian-innovation model than for the Student-innovation model. In
contrast, the VaR parameter at level 1% is slightly larger for the second model. In other
words, the first model is more volatile but less risky than the second one for the VaR at
1%. The difference between the two models is even more pronounced when ES-parameters
at the level 1% are considered. In particular, the coefficient α∗0, measuring the impact
of a large squared return on the risk of the next period, is 1.5 larger in the model with
student errors than in the conditionally Gaussian model.
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Table 1: VaR and ES parameters at the 1% level for GARCH(1,1) models

Errors distribution ηt ∼ N (0, 1) ηt ∼ 1√
2
St4

Volatility parameter (1, 0.05, 0.9) (1, 0.04, 0.9)
VaR parameter (5.41, 0.27, 0.9) (7.01, 0.28, 0.9)
ES parameter (7.10, 0.36, 0.9) (13.63, 0.55, 0.9)

2 Estimating the conditional risk parameter

We developed an estimation procedure for a general conditional risk measure. For sim-
plicity, we concentrate here on the VaR.

The VaR parameter of a GARCH(1,1) has been defined in Example 1. To extend the
definition of the conditional VaR at level α, we first need to reparameterize Model (1). If
α is not too large (more precisely α < P (η0 > 0)), from P [ηt < F−1(α)] = α we deduce
P [η∗t < −1] = α where η∗t = −ηt/F−1(α). Letting θ∗0 = H(θ0,−F−1(α)), the model can
be reparameterized as {

εt = σ∗t η
∗
t , P [η∗t < −1] = α,

σ∗t = σ(εt−1, εt−2, . . . ; θ
∗
0).

(4)

The theoretical VaR is now given by

VaRt(α) = σt(θ
∗
0), (5)

where θ∗0 is the VaR parameter at level α.
Two estimators of that parameter can be considered.

2.1 Two-step VaR estimation

First consider the usual approach for estimating the VaR in Model (1) under the identi-
fiability condition

Eη2
t = 1. (6)

This approach involves two steps. In a first step, the model is estimated by the standard
QMLE and, in a second step, the theoretical quantile ξα := F−1

η (α) is estimated using the

estimated rescaled innovations. More precisely, let θ̂n denote the Gaussian QMLE of θ0

in Model (1) under the constraint (6), let

η̂t =
εt

σ̃t(θ̂n)
,

and let ξn,α denote the empirical α-quantile of η̂1, . . . , η̂n.
When ξn,α < 0, an estimator of the VaR at level α is then given by

ṼaRt(α) = −σ̃t(θ̂n)ξn,α = σ̃t{H(θ̂n,−ξn,α)}.
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If the distribution of ηt is assumed to be symmetric, another estimator of VaRt(α) is

˜̃
VaRt(α) = σ̃t(θ̂n)ξ̃n,1−2α = σ̃t{H(θ̂n, ξ̃n,1−2α)} (7)

where ξ̃n,1−2α is the empirical (1− 2α)-quantile of |η̂1|, . . . , |η̂n|.

2.2 One-step VaR estimation

Define a QMLE of θ∗0 by

θ̂∗n = arg max
θ∈Θ

n∑
t=1

log
1

σ̃t(θ)
hα

(
εt

σ̃t(θ)

)
(8)

where
h(x) = hα(x) = λα(1− 2α)|x|2λα−1{|x|−λ1{|x|>1} + 1{|x|≤1}} (9)

for some positive constant λ (which does not matter). It can be shown that, when the
distribution of ηt is symmetric and under some regularity conditions, a one-step consistent
estimator of the VaR parameter, not requiring any estimation of the quantile function of
the innovations ηt, is given by

V̂aRt(α) = σ̃t(θ̂
∗
n). (10)

The non-Gaussian QML estimator defined by (8)-(9) is also related to estimators
introduced in the quantile regression literature. Letting ρα(u) = u(α− 1{u≤0}), it can be
seen that

θ̂∗n = arg min
θ∈Θ

1

n

n∑
t=1

ρ1−2α

{
log

(
|εt|
σ̃t(θ)

)}
.

To interpret this expression, note that the first equation in Model (4) can be equivalently
written as

log |εt| = log σ∗t + log |η∗t |, P [log |η∗0| < 0] = 1− 2α (11)

under the assumption of a symmetric distribution for η∗0. Model (11) resembling a quantile
regression model, it is not surprising to get an estimator of the form (11). An important
difference with the quantile regression or autoregression, however, is that σ̃t(θ) is not
assumed to be a linear combination of explanatory variables, or past observables.

Under some assumptions, and assuming that the density f ∗ of η∗0 is continuous at 1
and satisfies f ∗(1) > 0 and M = supx∈R |x|f ∗(x) < ∞, there exists a sequence of local

minimizers θ̂∗n of the criterion defined in (11) satisfying

√
n(θ̂∗n − θ∗0)

d→ N
(

0,Ξα :=
2α(1− 2α)

4f ∗2(1)
J−1
α

)
,

5



where Jα = EDt(θ
∗
0)D′t(θ

∗
0) and Dt(θ) = σ−1

t (θ)∂σt(θ)/∂θ.

Let Ξ̂α denote a consistent estimator of the asymptotic variance Ξα. The delta method
thus suggests a (1− α0)% confidence interval for VaRt(α) whose bounds are

σ̃t(θ̂
∗
n)±

Φ−1
1−α0/2√
n

{
∂σ̃t(θ̂

∗
n)

∂θ′
Ξ̂α
∂σ̃t(θ̂

∗
n)

∂θ

}1/2

, (12)

where Φ−1
α0

denotes the α0-quantile of the standard gaussian distribution. Drawing such
confidence intervals allows to underline that the VaR evaluation is subject to estimation
risk. Even when the model is correctly specified, the market risk, as measured by the
theoretical VaR defined by (5), is not known with exactness, but is likely to belong to the
confidence interval (12).

2.3 Comparison of the one-step and two-step estimators

A comparison of the VaR estimators
˜̃
VaRt(α) and V̂aRt(α) defined in (7) and (10) can

then be based on the asymptotic accuracies of the estimators θ̂∗n and H(θ̂n, ξ̃n,1−2α) of θ∗0.
For standard GARCH models with a symmetric density f for ηt, we have

Varas{
√
n(θ̂∗n − θ0,α)} � Varas

{√
n
(
H(θ̂n, ξ̃n,1−2α)− θ0,α

)}
iff ∆α ≤ 0.

where

∆α =
2α(1− 2α)

ξ2
αf

2(ξα)
− (Eη4

t − 1).

Interestingly, comparing the asymptotic variance matrices of the estimators amounts
to determining the sign of a real coefficient, which solely depends on the distribution of
ηt. None of the methods is superior in every situation. If the fourth-order moment is
large, a fortiori if it does not exist, the one-step estimator will be better. Conversely,
for distributions admitting moments at any order (such as the Gaussian) the two-step
estimator may be superior.
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